AI used for Education must be driven by teachers not inflicted on teachers

Teachers need to be central agents in deciding how AI is used in education. Perhaps we should talk about EdAI rather than AIEd to make this point. It is teachers who will be the orchestrators of when, and how, to use AIEd tools. In turn, the AIEd tools, and the data driven insights that these tools provide, will empower teachers to decide how best to marshal the various resources at their disposal.

Orchestrator1More than this, though, teachers – alongside learners and parents – should be central to the design of AIEd tools, and the ways in which they are used. This participatory design methodology will ensure that the messiness of real classrooms is taken into account and that the tools deliver the support that educators need – not the support that technologists or designers think they need.

Teachers who take part in these processes will gain increased technological literacy, new design skills, and a greater understanding of what AIEd systems can offer.

xyleme-learner-teacher-instructional-design

The increased introduction of AI-powered tools will serve as a catalyst for the transformation of the role of the teacher. AIEd is well placed to take on some of the tasks that we currently expect teachers to do – marking and record keeping, for example.
Freedom from routine, time-consuming tasks will allow teachers to devote more of their energies to the creative and very human acts that provide the ingenuity and empathy needed to take learning to the next level.

As this transformation takes place, teachers will need to develop new skills (maybe through professional development delivered through an AIEd system). Specifically they will need:
• A sophisticated understanding of what AIEd systems can do to enable them to evaluate new AIEd products and make a sound judgement about its value to them, and their students
• To develop research skills to allow them to interpret the data provided by AIEd technologies, to ask the most useful questions of the data, and to walk students through what the data analysis is telling them (for instance, using Open Learner models)
• New teamworking and management skills as each teacher will have AI assistants in addition to their usual human teaching assistants, and they will be responsible for combining and managing these resource most effectively

shutterstock_233886661

Most excitingly, with the evolution of the teacher’s role will also come the evolution of the classroom, as AIEd tools allow us to realise what it is unrealistic to expect any teacher or lecturer to do alone. For example, making the positive impact of one-to-one tutoring available to every child, or realising effective collaborative learning (a difficult activity to keep on track without some form of additional support).

 

This post is an adapted extract from Intelligence Unleashed published by Pearson.

Will Artificial General Intelligence (AGI) cope with ‘messy’ real world learning?

I was catching up with reading my weekend papers and came across the Observer Tech Monthly profile of Demis Hassabis, the founder of DeepMind. I have never met Demis, but the Observer piece echoes the descriptions I have been given by those who do know him. He is incredibly bright and also extremely modest: a nice ‘ordinary’ North London guy. I feel comforted that someone like this is at the forefront of our efforts to extend the boundaries of Artificial Intelligence (AI) and the achievements of DeepMind are certainly impressive. However I am less convinced about the real potential of Artificial General Intelligence or AGI, especially when it comes to its application to education.

download2I can buy into the vision of a world where smart people work with smart machines to solve wicked problems, such as cancer. And I can see that there is indeed too much information for many of us humans to process, so some artificially intelligent help would be great. I like the idea that AGI will “automatically convert unstructured information into actionable knowledge…. to provide a meta-solution for any problem” But that’s where it falls down for me, I can’t believe that the structured knowledge will be applicable to any problem.

IMG_8934The reason I hold this view is twofold. Firstly, much of the knowledge that helps us negotiate our way through the world is highly contextualized. There is significant evidence that a learner’s context impacts significantly upon their learning process and that in essence each individual person has his or her own individualized learning context. Secondly, teaching and learning in the real world provides extremely messy data. It’s this very messiness in teaching and learning settings that is crucially important. Partly because one never knows if what appears to be mess is actually important for learning. For example, a disagreement between two children will probably upset at least one of them and that in turn will impact on their learning. I would need to see some clear examples of contextualized AGI (is that a contradiction in terms?) and its propensity for messy real world learning settings to be convinced that AGI for education is a way forward.

hero-learning-pathsIt’s not just DeepMind whose remarkable systems are not to my mind suitable to take over education. I was on a panel with Jose Ferreira CEO of Knewton last month and it became clear that Jose believes that Knewton is smart enough to play the role of a teacher. It certainly is impressive technology. However, Knewton relies upon ‘clean’ data and that is not what classrooms are like. To my mind the most likely outcome for AI within Education is not for AGI, but for AI components to provide teachers with a selection of smart tools that teachers can use with learners as and when they think it appropriate. It really is the smart combination of Human and Machine intelligence that will win the day.

artificial-intelligence-job-killer-or-your-next-boss

Learning with technology: exposing expert knowledge through rich media and interactivity

cartoonI was talking at a school governors’ conference last week and decided to introduce the concept of the Learning Acts as a way to explore how technology can best be used to support learning within schools (and beyond). I have blogged about the 19 Learning Acts[1] that have been observed to occur when students are learning with digital media.

The governors I spoke to found the idea of the Learning Acts extremely helpful and I thought therefore it would be worth thinking about some of them in more detail here.

 

 

The firsrowlandson_-_chemical_lecturest Learning Act I’m going to consider is Exposition. This act can be thought of as a learner’s private interaction with the author or speaker who is presenting a narrative account of knowledge. The expert’s Knowledge is thereby “exposed” to the learner. A lecture or a television programme, are examples of Exposition and these can be very effective.

 

However, in order for Exposition to be most productive for learners it should be used with expertise that can be transmitted in a structured narrative form.

sal-khan-khan-academy

blueplanet_cmyklrgThe success of Exposition in support of learning lies in the depth of the private interactions that are elicited from the (otherwise passive) learner. Technology can offer an excellent means to support such depth of interaction through the use of material that is vivid or representationally rich. The learner will need to use or develop the knowledge construction skills to enable them to process the information presented by experts and to construct their own understanding: their own narrative.

Of course the real art of teaching through the Learning Acts is in the way the different acts are blended together and again technology can help. For example, we could blend Browsing, Ludic and Simulation Learning Acts into an activity or a lesson and use well designed Interactive Video to support students. Interactive Video is an increasingly popular presentation format with powerful examples available on-line, for example the Channel 4 video at the link below.

Watch out for discussions of more Learning Acts in future blog posts.

 

Interactive Video Example

2BillionMile

 

[1] Manches, A., Phillips, B., Crook, C., Chowcat, I., & Sharples, M. (2010). CAPITAL-Curriculum and Pedagogy in Technology Assisted Learning.

The Bett(er) the Learning Science, the more intelligent the technology

In my trip to Bett this year I was lucky enough to speak in the arena on the opening day when the place was abuzz. I spoke about the Learning Sciences and in particular the concepts of Metacognitive theory and theory of Deliberate Practice. The first of these concepts is about thinking about our own thinking. It can be thought of as Metacognitive Awareness and Metacognitive Control, and it is important for learning. Metacognition has been shown to be a better predictor of primary school children’s performance than IQ tests, and Metacognitive ability has been shown to have a positive impact on learning across the ages. The great thing about Metacognition is that it can be taught to metacognition-image-e1411763056642learners of all abilities, and in particular it can be taught by intelligent software as well as by human teachers. The second concept, that of Deliberate Practice confirms the adage that I was all too frequently reminded about as a child: Practice makes Perfect. Well, yes it does, provided that it is effort full, that the learner is motivated and that the practice is accompanied by appropriate feedback and the capacity for learners to see their own success. The qualities of practice just listed are within the skill sets of intelligent software as well as being in the skill sets of intelligent humans. Both human and machine are enriched by our knowledge of these concepts.

I was accompanied on the stage at Bett by David Levin the CEO of McGraw Hill . David charted his company’s development path from books, through e-books to adaptive software. This adaptive software enables each learner to take a personalized variable learning path through the educational material about his or her subject. The software tracks each learner’s progress and identifies areas of weakness so that help can be provided. For teachers, this type of software provides detailed monitoring information straight away and for the developers of the educational content used by the system there is also speedy feedback about what is working well and what needs redevelopment.

1448003155016

In addition to David’s presentation, I was really struck by the increased appearance of Adaptive Systems or software at Bett. These are systems that use Artificial Intelligence (AI) techniques to  support student learning by adapting to what the student needs: just like a skilled human tutor. dcqehohll3cy5ytjkdvqThis adaptation might, for example be to change the difficulty of the task the student has been set, or it could be to increase or decrease the extent of the helpful interventions that the software provides while the student is trying to solve a problem. This type of software uses AI to provide such tutorial individualization and I believe that AI may finally have achieved a position that will enable it to provide benefits for Education akin to those Siri has provided for personal assistance.

industry-40-and-its-technological-needs-12-638The adaptive software I saw at Bett was very like the adaptive systems that have been developed and studied by the Artificial Intelligence and Education community for several decades now. Indeed the whole topic of Artificial Intelligence (AI) is very much in the news at present, with much attention being paid to its role in the Fourth Industrial Revolution, in particular the way in which AI is replacing people in an increasing variety of jobs.

 

brainology-some-amazing-facts-you-didnt-know-about-your-brain_519a2c0a6a4c9_w1500One area that the AIEd community has paid increased attention to is the use of findings from the Learning Sciences to inform the design of AIEd systems. For example, psychologists, such as Carol Dweck, have spent many years developing a theory about motivation that is based upon the idea that some people have a growth mindset, whilst others have a fixed mindset. Those with a growth mindset believe that their abilities can be developed, but those with a fixed mindset believe that intelligence or learning ability is simply a fixed trait. There is a growing body of evidence that shows students’ mindsets play a key role in their success. And again, as with metacognition, students can be taught that the brain is like a muscle that gets stronger and works better the more it is exercised. They can also be taught that every time they stretch themselves, work hard, and learn something new, their brain forms new connections and that, over time, they become smarter. There is growing evidence to demonstrate that changing students’ mind-sets can have a substantial impact on their grades and achievement test score.

Human teachers can of course help learners to develop a growth mindset, and so can AIEd systems. In both instances: the human and the AI, the teaching is better for being informed by the Learning Sciences.

 

 

Why Educational Technology needs the Learning Sciences

I very much enjoyed myself at the EdTech Forum organised by Founders Factory and at Bett. On both occasions I spoke about the Learning Sciences and we had some great discussions. BUT what are the Learning Sciences and why are they so important for EdTech?

DCS_9315_155.jpg

The Learning Sciences is an interdisciplinary research field that aims to increase our understanding of the learning process and to engage in the design and implementation of learning innovations, such as those enabled by technology. The disciplines encompassed include cognitive science, educational psychology, computer science, anthropology, sociology, information sciences, neurosciences, education, design studies, and instructional design.

This increased understanding about how people learn ought to  underpin the design of all EdTech, but sadly it does not. A couple of examples might help here.

The Self-Explanation Effect

Micheline Chi now at Arizona State University has done some fascinating work on what she calls: The Self-explanation effect and cognitive engagement. Simply put, students learn better when they explain to themselves the material they are working on. The self-explanation effect has been studied across age groups, subjects, and educational contexts. Evidence shows that a learner explaining an idea to themselves will learn more, because the process of self-explaining is a constructive learning activity.

table_self-explanation_effect.v2.jpg

(Table from http://serc.carleton.edu/details/images/26492.html)

Constructive learning is a form of active learning. Evidence suggest that it is useful to consider 4 types of engagement:

  • Passive engagement: e.g. hearing an explanation
  • Active engagement: e.g. summarising an explanation
  • Constructive engagement: e.g. explaining to oneself
  • Interactive engagement: e.g. explaining to another

Studies have shown that students gain the most knowledge and improve their understanding during interactive engagement, followed by constructive engagement and active engagement, the least learning gains were achieved after passive engagement.

For EdTech this is relevant and has for example been used to inform the design of prompts and scaffolds within EdTech applications to encourage self-explanation in learners.

The Acts of Learning

The self-explanation effect is a very specific example of ways that the Learning Sciences are producing findings that are relevant for EdTech developers and users. A more general example can be found in that of Learning Acts: a product of the CAPITAL project. The table below illustrates the 19 Learning Acts that have been observed to occur when learning occurs with digital media, these are grouped into four meta-categories.

For example, a standard video would promote and support Exposition as a Learning Act. This Act is characterised as a private interaction with an author or speaker who is presenting a narrative account of knowledge to a learner. Knowledge is thereby “exposed”. This practice is well suited to situations where expertise can be transmitted in structured narrative form. The success of this form of learning depends on the depth of the private interaction elicited from the (otherwise passive) learner. Thus technology may support such depth of interaction by making material vivid or representationally rich. Interactive video is likely to also promote Learning Acts such as Browsing, Ludic, Simulation and Problem Focussed. The effectiveness with which the range of different Learning Acts is supported through the design of interactive EdTech will impact upon its Learning effectiveness.

LearningActs.jpg

For more information about the self-explanation effect see for example, http://chilab.asu.edu/papers/Wylie_Chi_SelfExplanation.pdf

For more information about the Learning Acts see – Manches, A., Phillips, B., Crook, C., Chowcat, I., & Sharples, M. (2010). CAPITAL-Curriculum and Pedagogy in Technology Assisted Learning. http://www.icde.org/filestore/Resources/Reports/CAPITALfinalreport.pdf

 

 

DCS_9315_155.jpg