Decoding Learning: The Proof, Promise and Potential of Digital Education

This evening Nesta launched their report: Decoding Learning, which was authored by the London Knowledge lab and colleagues at LSRI in Nottingham.

Our starting point for the research we report was that digital technologies do offer opportunities for innovation that can positively transform teaching and learning, and that our challenge is to identify the shape that these innovations take.

Many research studies have addressed the impact of particular technological innovations, and many meta–analytic reviews have aggregated these findings. Typically, these synthesising reviews do find some evidence of positive impact. However, there are two important complicating factors that limit the strength of the claims that can be made.

Firstly, the evidence is drawn from a huge variety of learning contexts: the wide range of teacher experience and learner ability means that too often the impact identified is relatively modest in scale. The breadth of contexts limits the impact.

Secondly, these findings are invariably drawn from evidence about how technology supports existing teaching and learning practices, rather than transforming those practices.

We looked for proof, potential and promise in digital education:

Proof by putting the learning first.

Promise for technology to help learning in new ways.

Potential to make better use of technologies we already have.

In order to ask these questions we need to look beyond the published research and corporate publications, we need to look at what is happening amongst teachers and learners as well.

What is clear is that no technology has an impact on learning in its own right; rather, its impact depends upon the way in which it is used. Accordingly, we have organised our review around 8 effective learning themes, which are based upon an analysis of learners’ actions.

In each theme there are reasons to feel positive and reason to want more – there are some great examples in this report from traditional technologies such as:

  • Interactive White Boards being used in effective ways, to
  • Learners working with experts to identify solar storms, to
  • Using context-rich life-logs to increase their understanding of their own learning and capability and
  • teachers creating GPS games that meet the learning needs of their students.

It is important to recognise that in addition to the learning themes themselves, which incorporate a variety of learning activities; the learning themes can be combined in interesting and effective ways– for example, the suite of web-based learning tools that was used in one of our highly rated teacher-led examples illustrates one example of Learning in and across Settings providing an overarching framework for Learning through Making. Small groups of learners were taught web design using collaboration scripts and incomplete concept maps. These tools were designed to allow groups of learners to work together on extended tasks using a scripted inquiry approach. The cross-setting opportunities created by the online environment allow classroom support for construction projects that mainly occur at home.

BUT Understanding how technology can be employed to improve learning is only part of the picture.

If innovations are to enter the mainstream, and if they are to fulfil their obvious potential, there are a number of systemic challenges that must be addressed.

We have identified certain trends and opportunities grounded in effective practice and set out what we believe are the most compelling opportunities to improve learning through technology.

For example, there is too little innovative technology-supported practice in the critical area of Learning from Assessment. And yet huge potential through learning analytics and a growing appetite for formative assessment. If, as learners, we do not know what we understand then how can we progress? If, as teacher, we do not know what our students understand, how can we help them to learn?

Making is an effective way of learning. There is much excitement around mending, mashing, and making with digital tools, making it an area ripe with possibility. Robotic kits, authoring tools, and multimedia production tools are just some examples of the technologies that can support learning through making. To learn effectively through making, careful consideration needs to be given to how the process of making leads to the desired learning outcome and to the sharing that is a vital component of learning through construction

What more might we gain by combining these two themes and conducting formative assessment through making and sharing?

All these examples, highlight the fact that Innovation needs to be conceptualised as some learning with a technology used in a particular way in a particular context.

1) We must stop talking about technology generically without being more specific – what technology, how used to support what type if learning, where, with whom and with what else?

To not recognize this is to reduce the value of the question to asking if roads are an effective ay of getting from a to b – of course roads can get me from a to be, BUT which road, what time of day, who else is driving, what are the weather conditions? Will it be faster than the train – well it depends….

… And travel is so much simpler than learning

So,  – Ask rather can games help make the drill and practice activities effective for learners on their own at school? Sure, they can if they are well designed and challenge the child appropriately addressing explicitly what needs to be learnt and offering appropriate support.

Can digital making and mobiles help learners understand more about how energy consumption in their home changes over time and according to their household’s behaviour – well sure it can if they use some sensors for temperature and light, arduino technology and data reporting to an online aggregator, such as cosmo.com for example, and then present and access this through a bespoke mobile phone application that you build yourself and that you can use to check the family consumption while you are travelling home from school on the bus

…And these technologies are inexpensive

Ask the right question and you’ll get a useful answer

2) We need to take more notice of practice and better link this to academic research.

We need to think again about how this type if evidence can be more effectively brought into the picture – can we use technology to create the kind of database of examples that can start to provide a more ‘scientific’ evidence base for us ot use?

3) New pedagogy? or old pedagogy in a new frock?

If you really want to change pedagogy then stop JUST collecting evidence about how to make existing pedagogy work with technology

4) We need to know more about what is happening when technology is used effectively.

We need better evidence about the context in which technology is being used effectively.Evidence about the impact of technology on teaching and learning is gathered from a huge variety of learning settings, and reported without adequate indexing of the contextual factors that influence the nature and scale of the impact recorded. This means that applying the findings of any research study to a fresh setting is severely hampered. We need to know where, with whom, with what …

5) Make better use of what we have got

We need to change the mindset amongst teachers and learners: from a ‘plug and play’ approach where digital tools are used, often in isolation, for a single learning activity; to one of ‘think and link’ where those tools are used in conjunction with other resources where appropriate, for a variety of learning activities. Teachers have always been highly creative, creating a wide range of resources for learners. As new technologies become increasingly prevalent, they will increasingly need to be able to digitally ‘stick and glue’. To achieve this, teachers will need to develop and share ways of using new technologies – either through informal collaboration or formal professional development. But they cannot be expected to do this alone. They need time and support from school leaders to explore the full potential of the technologies they have at their fingertips as tools for learning. School leaders can further assist teacher development by tapping into the expertise available in the wider community.

6) If you want better innovations, then  Link industry, research and practice to realise the potential of digital education.

There is strong evidence of disconnect between the key partners involved in developing educational technology. This situation makes little sense at a time when technology has become consumerised across society, and there is increasing evidence for the efficacy of technology as a learning tool. Academic and practitioner research is poorly connected and is typically conducted in isolation from the technology developers whose products grace our schools and homes. And yet, both researchers and the developers of educational technology need to know whether, and how, their work enhances learning. Industry, researchers and practitioners need to work closely together to test ideas and evaluate potential innovations at a time when design changes can easily be implemented and products can be improved before they are taken to market. Such a process would benefit industry by providing clearer evidence of effectiveness to boost sales; and it would benefit practitioners who would have access to better products on the market.

Vygotsky, programming, computer gaming and fulfilling our potential

I had a fascinating discussion with Alasdair Blackwell from Decoded today about the kind of pedagogy that might ground his innovative approach to teaching coding. This conversation allowed me to indulge myself in talking about the work of Lev Vygotsky, a man who lived in Russia at the start fo the 20th century and from whom we can still learn a lot. So, what could his work have to say that could be relevant to ICT, Computer Science and the emerging technologies of today on games consoles, smart phones, ipads etc.? Quite a lot actually…

One of the key things Vygotsky’s work promoted is the idea that we should be more interested in a learner’s potential for future growth and achievement than we should be in their current ability to achieve, as measured, for example through many forms of assessment. We should be more interested in this potential because it is a greater predictor of a learner’s ability to develop further in the future and because we can help learners to do better by focusing upon this potential.

But how can we focus on this potential? We can do this by offering learners assistance so that we can see how much they can achieve with this assistance. The more learners  achieve with assistance, the greater their potential for the future. The idea is that as the assistance is removed, the learner moves on to the next challenge. So what has this got to do with emerging technologies?

Well, consider the types of popular application that offer an adaptive learning experience, for example Manga High if these adaptive ‘engines’ were powered by data bout how well their users had dealt with challenges beyond their current ability and how well they had taken best advantage of any hints, tips and assistance available to them, then they would be better predictors of a learner’s potential and they may also be even better at extending learners to build on their current understanding and progress to a greater extent. The idea that being given assistance to achieve is important for learning and development must of course be tempered with the knowledge that this assistance must be sensitively faded so that the learner can do it alone and then move onto the next challenge when the help and assistance must be ramped up. This idea of offering and withdrawing assistance in a manner that is suited to a learner’s needs is what top teachers achieve and it is what emerging technology can also enable. This is applicable not just to games and adaptive system like, but also to technologies that support collaborative learning, such as (add links). These technologies are great for young learners who find them deeply motivating, but left to their own devices learning for most young people is unlikely to move beyond the relatively pedestrian social activities that are fun, but that don’t stretch them to fulfill their potential. Of course, with the help of a teacher or a friend who knows a bit more they can achieve a great deal more, using the technologies that they already own and use. (see the evidence for this in these papers). What does this mean in practical terms for people who are using or designing technologies and applications? It means that learners need to be constantly challenged to achieve things beyond their own individual ability and then given some assistance to help them achieve success. This assistance might come in the form of hints and tips and feedback built into the activity or application, or it might come from other learners, teachers, parents friends, whatever the sources of the help, the important thing is that it is gradually and sensitively removed, so that the learner develops to their full potential. games that challenge you to take on the next level of difficulty and allow you to take advantage of hints and tips to be successful. If these games measured the efficiency with which their players used those hints and tips to achieve success they could tailor the levels of difficulty the user is challenged to take on in order to maximise the extension of their learning potential. and then extent to which users in the potential of a learner to achieve something that challenges them than we should be in their ability to achieve something on their own.

Mama teach me how to code: who cares about the lost generation of parents?

I recently wrote a post for the IOE blog about the surge in enthusiasm for the challenges and opportunities of computing in schools. I drew attention to recent press coverage as well as to the interjections of Michael Gove, The Royal Society and Nesta, which I have discussed previously in this blog. For example,  John Naughton in the Observer outlined a manifesto for teaching computer science in the 21st century, and Janet Murray in the Guardian celebrated the enthusiasm of a new generation of coders in schools. In the debate so far, much attention has been given to discussion of the training and skills requirements for teachers, and this is certainly vital.  However, there is a broader group of influencers and supporters who need to be equipped to progress the initiative effectively.

John Naughton highlighted School Governors as a resource that needed to be harnessed and I would add to that another important category of resources, and that is Parents. In my experience that vast majority of parents are keen to help their children progress at school, but they can be anxious about their knowledge of the way that certain subjects, such as Maths, are taught at school. What chance will most of them have to help their children learn computer science? There is much research evidence to support the important contribution that parents can make to their child’s achievements at school, so who is tapping into this vital educational ingredient to make sure that they are able to gain the skills they want and need in order to be able to help their children achieve of their best?

Time to re-load? Computational Thinking and Computer Science in Schools

Snapshot—April 5th, 2012 In Chicago today the Obama re-election campaign is set to be the most technically sophisticated ever seen with voters being wooed via Twitter and Facebook, and digital technology along with those who understand how to build and use it set to play a key role in influencing people’s decision making. Across the Atlantic in the UK we face an abundance of choices about how to exploit and use technology, and this poses an enormous challenge for both the current and future education of our children. The realisation that we need people who can produce as well as consume technology has brought a new energy and excitement about computer science and computational thinking, which is being heralded by some as the new literacy of the 21st century. The technology revolution has changed the way many of us work and interact, it has generated new industries and new
businesses, and it is natural that we now look to schools, teachers and the education system to help us to understand how we might best prepare our children to live, work and make best use of what computer technology offers.

But how best can we do this?

A mess? 2012 has seen the Secretary of State for Education state that “ICT in schools is a mess” and he has called for a new approach with the hope that technology can be used creatively to develop curricular content: the ‘wiki’ curriculum. What is happening with ICT and computer science education in schools has also been the subject of a 2011 Naace report entitled “The Importance of Technology”, an Ofsted report on ICT in schools, and the importance of providing young people with the skills required by the new workplace is captured by Nesta’s Next Gen report. Clearly there is growing concern and government commitment to change, so what change should we make and why?

Is Computer Science the answer? Computer science is an important element of the debate. The Royal Society’s 2012 ‘Shut down or restart?’ report suggested that a sound understanding of computer science concepts enables people to get the best from the systems they use, and to solve problems when things go wrong. However, computer science is evolving rapidly and its interdisciplinarity means that its evolution touches on many domains and every day life. There are significant challenges for those interested in how best to include it in the curriculum.

Are we sure we know what we want to change? There is already some excellent teaching of ICT and computer science in some schools within the current curriculum and programme of study, so not everything is wrong. Care needs to be taken that the changes we make do lead to a better learning experience at school: an experience that inspires and educates. But, are we clear about what is wrong with computer science and ICT in schools now? Can we be precise about the rationale for what learners at different stages need to be taught? What do we want learners to be able to achieve as a result of studying computer science? Where do ICT and computer science fit in the structure of the school curriculum: media, design, science, cross-curricular?

How can learners tap into the power of computational thinking? The skills of computational thinking can be taught with or without computers, by exploring how processes work, looking for problems in everyday systems, examining patterns in data, and questioning evidence. With a computer, learners can put their computational thinking into action. Could a focus on computational thinking better equip learners to use their understanding effectively and to learn how to apply a range of computing tools? Writing the code that makes a computer behave in a particular way is a creative pursuit: reflecting on what you have constructed is a key part of learning. We may therefore valuably ask: How can we develop good computational thinking for children?

Are we looking in all the right places? Are there less obvious areas of research that might help us answer some of these questions? For example, many people encounter the experience of Flow and are all too familiar with the experience of losing themselves in a task. Might the idea of Flow itself help us understand the learning process in computational thinking and computer science? Researchers in the psychology of programming have spent decades exploring how people learn to code, surely their expertise needs to be drawn into the debate?

There are no short cuts to answering these questions. The process of addressing them requires an interdisciplinary and participatory approach that involves groups from across the sectors that is inclusive in nature and powerful in design. This will require an approach that is new to society, schools, teachers and learners: a process that must be both flexible in its thinking and realistic in its understanding of the role of schools.

Tomorrow we will be having a debate about some of these issues at the London Knowledge Lab and I’ll report back on how that goes.

Read our briefing paper (from which the above text is taken)

Follow the event through illuminate – go to http://link.lkl.ac.uk/e-meeting for access to the live stream.

Thinking like a computer or computing like a thinker?

In my last post I finished with a comment about pop-11, a langauge designed to help novices learn how to program and to grapple with Artificial Intelligence. I also included an image of the Eliza programme an early example of natural language processing designed in the sixties by Joseph Weizenbaum at MIT. The computer user typed in questions and the ELIZA programme appeared to make human like responses. It worked on a script and when the user started to ask questions that were outside the script, ELIZA struggled. Probably the most famous example of the ELIZA programme was that of a psychotherapist, but my version of the ELIZA programme was one of the first pieces of code I ever produced in pop-11. I found pop-11 a good way into programming, it enabled me to get something up and running quickly, it helped me to start thinking in a particular way and it introduced me to the practical design and application of algorithms. My ELIZA program took on the personna of a politician, and it was surprisingly realistic and succeeding in writing a program that worked and produced a dialogue gave me a huge amount of pleasure. You know the sort of thing:

John: You don’t seem to be having a very good week

Teresa: Why do you think I am not having a very good week?

John: Well it looks as if your attempts to deport Abu Qatada have been stalled

Teresa: My attempts to deport Abu Qatada have not been stalled

John: But you acted too early and you have left him a days window to appeal

Teresa: I have not acted too early and I have not left him a days window to appeal

John: Do you not think that the three month deadline ended after you arrested him?

Teresa: I do not think that the three month deadline ended after I arrested him?

John: Are you sure that you have counted the days correctly?

Teresa: I am sure that I have counted the days correctly?

John: Is it not possible that you and your team have made a mistake?

Teresa: No, it is not possible that me and my team have made a mistake?

John: So have the European Court confirmed that you and your team have the correct deadline

Teresa: I have confirmed that me and my team have the correct deadline

John: But have the European Court confirmed this

Teresa: I don’t know why you are asking me if the European Court have confirmed this

John: Because the European Court will now decide if there is time for Abu Qatada  to appeal

Teresa: I don’t know why you are asking me if the European Court have confirmed this. I have confirmed that me and my team have the correct deadline

John: But we need to know if the deadline you used was correct

Teresa: I don’t know why you are asking me if the European Court have confirmed this. I have confirmed that me and my team have the correct deadline

John: We seem to be going around in circles here

Teresa: I have not gone around in a circle I travel in a Jaguar: a circle is a simple shape of Euclidean geometry consisting of those points in a plane that are equidistant from a given point, the centre

John: !

To code or not to code, if that is the question, what is the answer?

I was struck by the item on the R4 Today program this morning at 8.45 ‘ish when Rory Cellan-Jones told us about his day course at Decoded, through which he, as a complete novice, built an app. You can see his app and his story on the Today website, and as Rory points out “coding is cool – the government is listening to those calling for it to be taught in schools, and executives are signing up for courses.” This has prompted me to reflect on my own programming experiences and to make this the subject of a few posts over the next few days and running up to our next “What the Research Says” event on computing in schools.

I am a member of the BBC micro generation who first came across computing through using this delightfully frustrating device. However, I was not a member of the young audience at whom this machine was aimed, but the wife of a teacher who became intrigued by what her husband was up to in his office. Having secretly mastered the manoeuvre of disk swapping that got you started with the BBC micro my appetite was whet and I enrolled for a course at the local technical college. When I went to sign-up I said I wanted to learn about computers and I was asked what I meant by that. I had no clue why they were asking me this question, because the answer seemed obvious to me – I wanted to learn how the computer worked of course! However, I was offered a range of courses that would take me into the realms of managing a spreadsheet or learning to word process as well as learning how to write a program in basic – no brainer of a choice for me then. I duly arrived at my first evening class ready to build something, no idea what, but something. I loved it, even though my outputs were modest:  a greeting on the screen (you know the one), a date reminder, but I was hooked. I wanted more and much to the bafflement of my husband and to my children aged 5 and 3 I announced that I was going ‘back to school’ and was going to apply to read Computer Science and Artificial Intelligence at University. I was a distinctly mature student and was a little afraid that I would be the ‘silly old woman at the back of the class’. My fears were unfounded – most of us felt silly when it came to programming, because for most of us it was very, very hard!

After my BBC basic baptism, I entered the heady world of pop-11 a langauge designed to help novices learn how to program and to grapple with AI.

 

To be continued….

Earth Hour 2012, Learning from our Teenagers to turn off the lights on Saturday

One of the pleasures of my job is that we work with learners and teachers through participatory research and design. Recently we have been working with teenagers at several different schools as part of a research project exploring teenagers’ understanding of energy and their consumption of it. With a view to motivating their curiosity to understand more and to want to be thoughtful about their own consumption and that of their peers, families and communities. The nature of the participatory approach helps the learning to work in all directions, so we learn a great deal through the process, not just about the teenagers and their energy lives, but about things like Earth Hour 2012. One of our groups of young people have taken the initiative at their school and organised local events to prompt people to think on Earth Hour. I didn’t know about Earth Hour until they enlightened me, which is a lovely demonstration that teenagers are not just key consumers of energy, they are also key communicators and I wil now be turning off my lights for an hour at 8.30 pm on Saturday

We know that despite the fact that we hear a lot about energy sustainability in political and popular rhetoric, energy consumption is rising. Teenagers are certainly important consumers now and in the future and yet little is known of their conceptions about energy.  There is growing evidence that they find it hard to translate their formal learning about energy  into an understanding of their personal energy consumption. We need to know more about: What energy consumption is relevant to teenagers? Why do teenagers think energy is an issue? Where do teenagers learn about energy? What would motivate teenagers to learn about energy consumption? And to know if they are they concerned.

It has been fascinating to find out more about teenage culture through the photo diaries, focus groups,  activities, questionnaires, and design work that we have completed.

And, there are clear ways in which technology can help, for example through:

  • linking science learning into everyday life,
  • motivating and supporting enquiry into personal energy consumption e.g. thorugh a mobile phone app,
  • linking resources in teenagers’ personal contexts to support enquiry,
  • and helping to communicate and activate their social networks about issues that spark their interest, such as Earth Hour

Vision for science and mathematics education, but what role for technology?

The RS are  calling for views for the ‘Vision for science and mathematics education 5-19’ project and yet there is little mention of a role for technology and technology enhanced learning expertise is not abundant on the advisory panel. Why I wonder? We clearly need to communicate the value of TEL for science and maths much more effectively.

For example, last year in response to the Education White Paper colleagues and I concluded that we know that well-designed technologies can be used to good learning effect through:

  • the creation and use of microworlds and simulations e.g. simquest, RoomQuake;
  • dynamic computational modelling to support software that adapts itself to the learner. This is effective for well-defined subject knowledge domains (including professional practice), and procedural and thinking skills e.g. Cognitive Tutors, for maths
  • participatory and personal toolkits to support inquiry-based learning e.g. participate, nquire;
  • games and game development, if carefully designed can motivate learners, including those who are currently marginalised or underperforming, e.g. UrbanScience, ZombieDivision;
  • versatile representational spaces to help people to see things differently and tackle the  unlearnable representations that can characterises ‘unlearnable’ material e.g. Migen.

What’s Research got to do with it? TEL research and emerging technology, part 2

Well I said I would follow-up and continue the discussion about what research can say that can help those developing and using emerging technologies. Coincidentally (or not) I was pointed to a blog post yesterday about the pace of change of technologies  and in particular to the comments. I noticed that one of the comments made the very point that:

“…can we afford to wait for thorough research on some of these issues? If we do wait 3 years for some further research to be done won’t it already be chronically out of date? The technological landscape evolves at a thrilling pace, is it making traditional research models and institutions look a little archaic?”

So clearly there is a need for us researcher folk to better communicate what research has to say that is relevant. I’ll try to pick up on some key things that research can tell us over the next few posts. Sometimes the research that has something to say has been done very recently, sometimes it is specific to a new technology, but actually much of the time there are some basic research findings about how people learn, sometimes from way back that are still very relevant to what technology can do to support learning. These research findings have the advantage of having been tried, tested and developed over many years. Sometime new technologies allow us to benefit from this fundamental research in ways that were not previously possible.

For example, research has demonstrated that learning an additional langauge is assisted by being able to experience the new language and its culture. Technology offers access to authentic linguistic and cultural content, through for example, online newspapers, video, and other digital media in the target language. These may be created for native speakers, but they may also come with enhanced  language input, such as access to simplification, explanations, multimedia, subtitles for video.

Effective feedback is important for learning and technology can help – it can offer swift, timely and constructive feedback for students and teachers across all education sectors through interactive tasks that can be automatically marked. It can also support humans to provide feedback to learners using text, sound, images and  without needing to be in the same physical place as the learner.

Thinking about and understanding more about what we want people to be able to do in order to learn and then thinking about how particular technologies can help us to achieve this can be just as valuable, if not more valuable, than looking at the specific things that a particular technology can do.

What’s Research got to do with it? TEL research and emerging technology

I was delighted yesterday evening to watch Jean Dujardin accept his Bafta award for best actor in the pure joy film ‘The Artist‘. I was particularly struck by his finishing touch with the endearingly gloomy Buster Keaton face. The wisdom of the past being recognized so beautifully in this gesture and indeed in the almost silent movie that blends the appeal of old technology with the wonder of the new. Is there a parallel to be drawn with TEL research much of which languishes without seeing the light of the non-journal publication day. Has it passed its prime as the world has moved on? What can research, that often takes a long time to bear fruit, say that is meaningful for technological innovations that move so quickly that some applications leap from the lab to the pocket with no time for proper evaluations of how they might or might not support learning? Actually, it can say a lot, but perhaps, unlike Michel Hazanavicius, we have not yet found quite the right way to get the message across… to be continued